OBJECT ORIENTATION - PLAYING WITH OBJECTS

Dr. Robert Kofler

Introduction to Programming

DA
June 18, 2015 1/40

WHY DO WE NEED OBJECTS?

They allow to create a simple representation of any complex scenario
in in the computer.

Dr. Robert Kofler Introduction to Programming June 18, 2015 2/40

REMINDER: FORMAL DEFINITION OF AN OBJECT

Objects in “object-oriented programming” are essentially data

structures together with their associated processing routines.
A object thus has:

» data structures

» processing routines (=called methods; similar to functions)

Dr. Robert Kofler Introduction to Programming June 18, 2015

3/40

REMINDER: MODELLING A COW

Which data-structures (which information does a cow have)?
> age
» milk yield
» ?? any other ideas
Which formal routines (what can you do with a cow)?
» feed()
» milk()
> ??

Dr. Robert Kofler Introduction to Programming June 18, 2015 4 /40

CLASS VS INSTANCE

Class

All cows adhere to the same template; the all have a age, a milk yield
and so on, this template is called “class”.

Instance

One specific cow adhering to the template (class). Thus the cow named
“Resi” is an instance, a cow named “Pepi” is an instance and so on.

To summarize, a class ‘cow’ represents the general concept of a cow, an
instance of a ‘cow’ is one particular cow.

Dr. Robert Kofler Introduction to Programming June 18, 2015 5/40

FARMVILLE3

Dr. Robert Kofler

Introduction to Programming

DA™
June 18, 2015 6 /40

COW INFO

A Swiss cow consumes about 70-100 kg g
about 20-25kg milk

rass per day and produces
Dr. Robert Kofler

Introduction to Programming

DA
June 18, 2015 7 /40

RELATIONSHIP BETWEEN FOOD AND MILK?

milk=tanh(food/60)*25

milk

T T
0 50 100 150
food

Dr. Robert Kofler Introduction to Programming June 18, 2015 8 /40

A CcCOw!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

import math

class Cow:

def

def

def

def

__init_ (self,name) :
self.name=name
self.foodinbelly=0.0

feed(self, amount) :

we just add the food to belly-content
multiple feeding would be possible
self.foodinbelly+=float (amount)

askName (self) :
return self.name

getMilk (self):

food=self.foodinbelly

compute the milk-yield

milk=math.tanh (food/60.0)*25

all the food has been transformed to milk
reset to zero

self.foodinbelly=0

return milk

Dr. Robert Kofler Introduction to Programming

June 18, 2015

D

9 /40

COW CONSTRUCTOR

A constructor is a special method (__init__) that is called only once
when an instance of a class is created (eg the cow resi). In Python, the

newly created instance will always be passed as first parameter to the
constructor.

defining a class
class Cow:

__init__(self, name)

creating an instance
cow1 = Cow("resi”)

Dr. Robert Kofler Introduction to Programming June 18, 2015 10 / 40

COW INSTANCES

defining a class
class Cow:
__init__(self, name)
self.name = name
self.foodinbelly = 0.0

creating an instance
cow1 = Cow("resi")
cow?2 = Cow("miazi")
print(cow1.name)
print(cow2.name)

cow2.name
="miazi"

cowl.name
— "resi”

Dr. Robert Kofler Introduction to Programming June 18, 2015 11 /40

USING A COW

import math

class Cow...

print (mycow)
print ("Cow name ", mycow.askName ())

mycow. feed (20)

mymilk = mycow.getMilk ()

11 print ("Ha, i got {0} liters milk".format (mymilk))
12 # format is a method of string (like split and ?)
13 # it replaces {0} with the first argument

14 # {1} with the second and so on

1
2
3
4
5 mycow = Cow("resi")
6
7
8
9
0

=] = = E E DAl
Dr. Robert Kofler Introduction to Programming June 18, 2015 12 /40

MINITASK; IS THE COW HUNGRY?

add a new method to the cow
with the name isHungry

is the belly empty?

true or false

S+ oW o

o
=

ask your cow before and after feeding
7 # before and after milking

=] = = E E DAl
Dr. Robert Kofler Introduction to Programming June 18, 2015 13 /40

UNSER LAGERHAUS

Dr. Robert Kofler

Introduction to Programming

Dacr
June 18, 2015 14 / 40

LAGERHAUS

import math
import random
COW

def __init__ (self,cowprize, foodprize,milkprize):
self.cowprize = cowprize

1
2
3
4
5 class Lagerhaus:
6
7
8 self.foodprize = foodprize

9 self.milkprize = milkprize
10 self.cownames=["miazi", "resi", "heidi", "parishilton"]
11
12 def buyCows (self, money):
13 cowcount=int (money/self.cowprize)
14 cows=1[]
15 for i in range (0, cowcount) :
16 cow=Cow (random.choice (self.cownames))
17 # random.choice pics a random element form a list
18 cows .append (cow)
19 return cows
20
21 def buyFood(self, money):
22 food=int (money/self.foodprize)
23 return food
24
25 def sellMilk (self, milk):
26 money=milk+self.milkprize
27 return money
28
29 def status(self):
30 print ("The cow costs {0}; the food {1}; the milk is worth {2};".format (self.

cowprize,self.foodprize,self.milkprize))
=] F = E E DA
Dr. Robert Kofler Introduction to Programming June 18, 2015 15/ 40

MINITASK; USE AND EXTEND THE LAGERHAUS

1 # use the Lagerhaus
2 # a.) creat an instance of a Lagerhaus
lh_obertupfing =

s # b.) buy a cow

4« # c.) buy ten cows and print their names

s # d.) sell some milk and print the obtained
money

6

7 # What else could a Lagerhaus do?

s # e.) add at least two methods to the Lagerhaus

=} = = = E DA
Dr. Robert Kofler Introduction to Programming June 18, 2015 16 / 40

FARM

Dr. Robert Kofler

Introduction to Programming

Dacr
June 18, 2015 17 / 40

THE FARM - PART 1

import math
import random

COwW

#h#

LAGERHAUSH##
class Farm:

def

Dr. Robert Kofler

__init__ (self, lagerhaus, startingbudget):
self.lagerhaus = lagerhaus

self.stable = [] # the stable is empty
self.foodstored = 0

self.money = startingbudget

buyCows (self, money):
if (money > self.money) :

money = self.money

if we don’t have enough, just spend the rest
newcows=self.lagerhaus.buyCows (money)
self.money —-= money # so we spent some money
self.stable.extend (newcows)
print ("Bought {0} new cows".format (len(newcows)))

buyFood (self, money):
if (money > self.money) :

money=self.money
newfood=self.lagerhaus.buyFood (money)
self.money —-= money
self.foodstored += newfood
print ("Bought {0} new food".format (newfood))

Introduction to Programming

June 18, 2015

DA™
18 / 40

THE FARM - PART 2

def

def

feedCows (self, amount) :
if amount > self.foodstored:

amount = self.foodstored

if there is not enough food left, just use the rest
amountpercow=float (amount) /len(self.stable) # number of cows
self.foodstored-=amount
for cow in self.stable:

cow. feed (amountpercow)

sellMilk (self):
milk=0
for cow in self.stable:
milk+= cow.getMilk ()
newmoney=self.lagerhaus.sellMilk (milk)
self.money+=newmoney
print ("Sold {0} milk, got {1} money".format (milk, newmoney))

status (self):
print ("Your farm has {0} cows; and {1} kg food; and {2} money".format (len(self

.stable) ,self.foodstored, self.money))

Dr. Robert Kofler Introduction to Programming June 18, 2015 19 / 40

OBJECT ORIENTED DESIGN - TRUE ART?

So the farm has a Lagerhaus...was this a good design decision?
Dr. Robert Kofler

o =
Introduction to Programming

E DA
June 18, 2015

20/ 40

RELATIONSHIP BETWEEN FARM AND LAGERHAUS

So in a real live situation
» there may not be a Lagerhaus at all

» the farmer may decide to switch to a different Lagerhaus, with
different prices

» what else?

» would changing prices cause an error in the game? what about
robustness?

Rule of thump: try to model the relationships like in the real world, a
farm can exist even without Lagerhaus.

Dr. Robert Kofler Introduction to Programming June 18, 2015 21/ 40

THE GAME: FARMVILLE3

Dr. Robert Kofler

Introduction to Programming

Dacr
June 18, 2015 22 /40

FARMVILLE3

import math
import random

COW

LAGERHAUS ##4#
FARM

meinLagerhaus=Lagerhaus (250,1,14)
myFarm=Farm(meinLagerhaus, 3000)

for i in range(0,10):

print ("Round {0}".format (i+1))
meinLagerhaus.status ()

myFarm.status () ;

money=int (input ("For how much money do you want
myFarm.buyCows (money)

myFarm.status ()

money=int (input ("For how much money do you want
myFarm.buyFood (money)

print ("Feeded all the food to cows; Selling the
myFarm. feedCows (myFarm. foodstored)
myFarm.sellMilk (

myFarm.status ()

print ("\n\n")

print ("Game over; you have {0} money".format (myFarm.

to buy cows? "))

to buy food? "))

resulting milk")

money))

Dr. Robert Kofler Introduction to Programming

June 18, 2015

DA™
23 /40

LAST TASK: BE CREATIVE :)

1 # now it’s your tern to apply what
2 # you learned during this lecture

4+ # a.) think of something you’d like to model
s # b.) write a similar tool
¢ # c.) this will be an important part of the

final exam
2 # d.) every script should be unique :)

=] = = E E DAl
Dr. Robert Kofler Introduction to Programming June 18, 2015 24 / 40

GUI-PROGRAMMING: BRINGING COLOR INTO
PROGRAMMING

Dr. Robert Kofler

Introduction to Programming

DA™
June 18, 2015 25/ 40

WHAT ARE THE ADVANTAGES OF A GUI?

» Every child can use it....that’s actually my child using an iPad
with 16 months..

» Interactive data exploring is possible, eg. genome browsers

Dr. Robert Kofler Introduction to Programming June 18, 2015

26 / 40

WHAT ARE THE DISADVANTAGES OF A GUI?

» automatization is more difficult
» incorporation into existing pipelines is impossible

» programming is more timeconsuming, especially the boring part
of programming

Dr. Robert Kofler Introduction to Programming June 18, 2015 27 / 40

HELLO WORLD WITH TKINTER

1 from tkinter import =«

2 # create the root widget

3 # ordinary window with title bar

« # only one root widget per program

s # always create first

s root = Tk ()

7 # create label as child of root

s w = Label (root,text="Hello, World!")

s # label must fit the size and make itself
visible

10 w.pack ()

11 # start the tool

12 root.mainloop ()

13 # press Fb5

=] = = E E DAl
Dr. Robert Kofler Introduction to Programming June 18, 2015 28 / 40

NICE, BUT THAT’S NOT GOING TO IMPRESS THE
LADIES

You have a nice tool with GUI, but to start it with Idle or from the
command line is not impressive.

= you should at least be able to start the app in Finder by
double-clicking

Dr. Robert Kofler Introduction to Programming June 18, 2015 29 /40

HOW TO CONVERT THE SCRIPT TO A MAC APP?

Convert the Python script with Platypus into a Mac application:
http:/ /sveinbjorn.org/platypus

= download, install and start Platypus

Dr. Robert Kofler

Introduction to Programming

DA
June 18, 2015 30 / 40

PLATYPUS

enter application name
‘000 myp(enter

4 Python3.3
App Name | Tkhelloworld

path
\ Script Type | Other... ¢ | | fusr/local{bin{python3.3 | | Aras

Script Path . _kcﬂetfipmffle:turesf;wthonf(nde.’lg-(khe\\cwcrld.w.
Reveal | [New | [Edn | [seffer. select path
Output | None 0

: to your script
Platypus Defait \

output
- ~ ; none
Identifier |org.robertkofler. Tkhelloworld Run with Administraor priieges
- . Secure bundled script
Author Robert Kofler 1 Run in background
Version 1.0 || Accepts dropped items (™ Remain running after initial execution
Files to be bundled into the application’s Resources folder (default working directory for script)
+ |
create me
Y a nice tool
e
T
0 items

Estimared final app size: ~375 KB

Clear [Create |

[m] = = =
Dr. Robert Kofler Introduction to Programming

DA™
June 18, 2015 31/ 40

VOILA, YOUR OWN MAC APP

sce

FAVORITES

[code

»

£3 mics

(2 citebits

(L] PeleEE

(£ QuantiSimEE
(L] es-prop

L] ee—dsim-pele
(2 python

F==Te

PYTHON

nce. task-casting.py

Tkhelloworld.app

PYTHON

task-ifelse.py

8 00 tk

Hello, World!

Dr. Robert Kofler

Introduction to Programming

June 18, 2015

DA™
32/40

MORE COMPLEX APP WITH A BUTTON

1 from tkinter import =

2 class App:

3 def __init_ (self,master):

4 # frame is a container, holding other widgets

5 frame = Frame (master)

6 frame.pack () # make the frame visible

7 # create a button with some text

8 # when pressed execute function update, remember sort?

9 self.button=Button (frame, text="say hello", command=self.
update)

10 self.button.pack (side=LEFT)

11 # create a Label right of the button

12 self.lab = Label (frame, text="you suck")

13 self.lab.pack (side=LEFT)

14

15 def update (self):

16 self.lab.config(text="sorry, you are great")

18 root=Tk()
19 app=App (root)
20 root.mainloop ()

o «F = e T 9ac

Dr. Robert Kofler Introduction to Programming June 18, 2015 33 /40

TURMRECHNER

from tkinter import =
class App:
def __init__ (self,master):
frame=Frame (master)

frame.pack () # make the frame visible
self.button=Button (frame, text="Compute", command=self.compute)
self.button.pack (side=LEFT)

#entry allows to enter text

self.ent=Entry (frame)
self.ent.pack (side=LEFT)
frame2=Frame (master
frame2.pack ()

self.listbox=Listbox (frame2, height=20)

self.listbox.pack (

def compute (self):

self.listbox.delete(0,END) # reset content of listbox

val=int (self.ent.get ())
for i in range(2,10):

self.listbox.insert (END,"{0}x{1} = {2}".format (val,i,valxi))

val=valxi
for i in range(2,10):

self.listbox.insert (END,"{0}x{1} = {2}".format (val,i,int(val/i)))

val=int (val/i)

root=Tk ()
app=App (root)
root.mainloop ()

Dr. Robert Kofler

Introduction to Programming

June 18, 2015

34 /40

TURMRECHNER IN ACTION

Dr. Robert Kofler

| Turmrechne | 100

8006 tk
100x2 = 200
200x3 = 600
600x4 = 2400

2400x5 = 12000
12000x6 = 72000
72000x7 = 504000
504000x8 = 4032000
4032000x9 = 36288000
36288000x2 = 1814400
18144000x3 = 6048000
6048000x4 = 1512000
1512000x5 = 302400
302400x6 = 50400
50400x7 = 7200
7200x8 = 900

900x9 = 100

Introduction to Programming

June 18, 2015

MY FIRST POCKET CALCULATOR

from tkinter import =

from tkinter import Button as B

class App:

def __init__ (self,m):

e=Entry (m)

e.grid(columnspan=3)
B (m, text=1, command=lambda:e
B(m, text=2, command=lambda:e
B (m, text=3, command=lambda:e
B(m, text=4, command=lambda:e
B(m, text=5, command=lambda:e.insert
B (m, text=6, command=lambda:e
B (m, text=7, command=lambda:e
B (m, text=8, command=lambda:e
B(m, text=9, command=lambda:e
+", command=lambda:e.insert (END, "+") ,width=4) .grid (row=4, column=0
—",command=lambda:e.insert (END, "-"),width=4) .grid (row=4, column=1)
.insert (END, "/"),width=4) .grid (row=4, column=2)
.insert (END, "+"),width=4) .grid (row=5, column=0
"clr",command=lambda:e.delete (0,END),width=4) .grid(row=5, column=1)

B (m, text

B (m, text="/", command=lambda :
B(m, text="+", command=lambda:

B (m, text

.insert (END, 1
.insert (END, 2
.insert (END, 3) ,width=4
.insert (END, 4) ,width=4

(

(

(

(

) ,width=4
)
)
)
END, 5) ,width=4
.insert (END, 6)
)
)
)

,width=4

,width=4
.insert (END,7),width=4
.insert (END, 8

,width=4
.insert (END, 9),width=4) .

grid(row=1,column=0)

.grid(row=1, column=1
.grid(row=1, column=2)
.grid(row=2, column=0
.grid(row=2, column=1
.grid(row=2, column=2)
.grid(row=3, column=0
.grid(row=3, column=1)

grid(row=3,column=2)

B (m, text="=", command=self.computendresult,width=4) .grid (row=5, column=2)

self.ent=e

def computendresult (self):
er=eval (self.ent.get ())
self.ent.delete (0, END)
self.ent.insert (END, er)

root=Tk ()
app=App (root)
root.mainloop ()

Dr. Robert Kofler

Introduction to Programming

[m] = = =
June 18, 2015

36 / 40

CALCULATOR IN ACTION

= = E E DA
Dr. Robert Kofler Introduction to Programming June 18, 2015 37 /40

LAST MINI TASK

Convert the calculator to a Mac-app and proudly sent it to someone :)

Dr. Robert Kofler Introduction to Programming June 18, 2015 38 /40

FINALLY, THE LADIES ARE IMPRESSED :)

= =) E E E DaAr
Dr. Robert Kofler Introduction to Programming June 18, 2015 39 /40

SOME NOTES ON THE FINAL EXAM

» the exam will be oral in the computer room

» bring all your tasks; preferentially as print and send me the last
one as email: rokofler ‘at” gmail.com

» Note: I prefer a self-made script with some problems over any
copied script that works

» Bring your student ID (Studentenausweis)

» Part 1: run a Python script from the command line, including
parameters and redirect

» Part 2: I pick a script and you need to explain it to me. Than I ask
stupid questions, like what happens if I delete this line of code

» Part 3: another script or your last task if well done

> Register for exam at
http:/ /drrobertkofler.wikispaces.com/PythonLecture

Dr. Robert Kofler Introduction to Programming June 18, 2015 40/ 40

